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The so-called 2/15-law for two-point third-order velocity statistics in isotropic
turbulence with helicity is computed for the first time from a direct numerical
simulation of the Navier–Stokes equations in a 5123 periodic domain. This law
is a statement of helicity conservation in the inertial range, analogous to the
benchmark Kolmogorov 4/5-law for energy conservation in high-Reynolds-number
turbulence. The appropriately normalized parity-breaking statistics, when measured
in an arbitrary direction in the flow, disagree with the theoretical value of 2/15
predicted for isotropic turbulence. They are highly anisotropic and variable and
remain so over long times. We employ a recently developed technique to average over
many directions and so recover the statistically isotropic component of the flow. The
angle-averaged statistics achieve the 2/15 factor to within about 7% instantaneously
and about 5% on average over time. The inertial- and viscous-range behaviour of the
helicity-dependent statistics and consequently the helicity flux, which appear in the
2/15-law, are shown to be more anisotropic and intermittent than the corresponding
energy-dependent reflection-symmetric structure functions, and the energy flux, which
appear in the 4/5-law. This suggests that the Kolmogorov assumption of local isotropy
at high Reynolds numbers needs to be modified for the helicity-dependent statistics
investigated here.

1. Introduction
There are two invariants of the inviscid Navier–Stokes equations – the total energy,

defined by E = 1
2

∫
u(x)2 dx, and the total helicity H =

∫
u(x) · ω(x) dx where the

vorticity ω(x) = ∇ × u(x). Energy has been extensively studied, especially in statistical
theories of turbulence as well as in experiments. Helicity, being sign-indefinite has
been more challenging to study theoretically. Direct experimental measurements of
helicity are also difficult because of the need to measure local gradients, requiring high
resolution and careful probe design (see for example Kholmyansky, Shapiro-Orot &
Tsinober 2001). Nevertheless, since the discovery of helicity as a conserved quantity by
Moreau (1961) and independently by Moffatt (1969), there have been several attempts
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to draw parallels with the energy dynamics. The existence of a helicity cascade was
proposed by Brissaud et al. (1973) and various possible inertial-range scalings of the
energy and helicity spectra were discussed. The joint forward (downscale) cascade of
energy and helicity has been verified in direct numerical simulations, most recently
by Chen, Chen & Eyink (2003a). A recent work by Kurien, Taylor & Matsumoto
(2004) showed that there is a relevant timescale for helicity transfer in wavenumber
space. The proper consideration of the helicity flux timescale showed that helicity can
modify the energy dynamics, measureably slowing it down in the high wavenumbers.

We here present a study of the small-scale phenomenology of turbulence with
helicity in the manner of the Kolmogorov (1941) (K41) investigation of helicity-free
turbulence. Using the Kármán–Howarth equation for the dynamics of the second-
order two-point correlation function (see von Kármán & Howarth 1938), K41 gives the
benchmark 4/5 energy law for homogeneous, isotropic, reflection-symmetric (helicity-
free) turbulence, assuming finite mean energy dissipation ε as ν → 0,

〈(uL(x + r) − uL(x))3〉 = − 4
5
εr (1.1)

for η � r � L0, the so-called inertial range. See Eyink & Sreenivasan (2004) for a
recently discovered derivation of a similar law by Onsager. Here, η is the Kolmogorov
dissipation scale, L0 is the typical large scale, uL(x) = u(x) · r̂ is the longitudinal
component of u along r̂ , the mean energy flux in the inertial range equals the
mean dissipation rate ε = 2ν〈|∇u|2〉, and 〈·〉 denotes an ensemble average of a high-
Reynolds-number decaying flow. It has been shown empirically and proved that this
is equivalent to a long-time average in statistically steady high-Reynolds-number
turbulence (Frisch 1995). The 4/5-law is a statement of the conservation of energy in
the inertial-range scales – the third-order structure function is an indirect measure of
the flux of energy to scales of size r . A key assumption of the K41 theory was ‘local
isotropy’ or isotropy of the small scales r � L0 at sufficiently high Reynolds number.
This assumption appears to hold according to high-Reynolds-number experimental
measurements of the 4/5-law even when the data are acquired in only a single
direction in the flow (Sreenivasan & Dhruva 1998).

Recently, a local version of the K41 statistical laws was proved in Duchon &
Robert (2000) (see also Eyink 2003 for the case of the 4/5-law in particular): Given
any local region B of size R of the flow, for r � R, and in the limits ν → 0, next
r → 0, and finally δ → 0,

〈(�uL)3〉(Ω,B) = lim
δ→0

1

δ

∫ t+δ

t

dτ

∫
dΩ

4π

∫
B

dx
R3

[�uL(r; x, τ )]3 = − 4
5
εBr, (1.2)

for almost every (Lebesgue) point t in time, where �uL(r) = uL(x + r) − uL(x) and εB

is the instantaneous mean energy dissipation rate over the local region B . The angle
integration dΩ integrates in r over the sphere of radius r . For each point x the vector
increment r is allowed to vary over all angles and the resulting longitudinal moments
are integrated. The integration over x is over the flow subdomain B . This version
of the K41 result does not require isotropy, homogeneity, long-time or ensemble
averages, or stationarity of the flow. This version of the 4/5-law has not yet been
rigorously verified empirically, but was shown by Taylor, Kurien & Eyink (2003) that,
at the very least, it does not seem to require isotropy, long-time or ensemble averaging;
it appears to be sufficient to average over many angles and over the domain at any
instant of a sufficiently ‘high’ Reynolds number flow.

The first attempt to study the symmetry and dynamics of the two-point correlation
function in flows with helicity was made by Betchov (1961). The simplest symmetry
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breaking of a statistically rotationally invariant flow is the breaking of parity (mirror-
symmetry) by the introduction of helicity. A useful analogy which we borrow from
Betchov (1961) is of a well-mixed box of screws. This is statistically invariant to rigid
rotations, that is it is isotropic. But under reflection in a mirror all the left-handed
screws become right-handed and vice versa, that is the system is parity- or mirror-
symmetry breaking. In particular, no combination of rigid rotations can transform
the box of screws into its reflected image. This is the type of symmetry breaking
we are considering here. Analogous to the K41 4/5-law, the so-called 2/15-law for
homogeneous, isotropic turbulence with helicity was derived by Chkhetiani (1996)
(see also L’vov, Podivilov & Procaccia 1997 and Kurien 2003),

〈�uL(r)(uT (x + r) × uT (x))〉 = 2
15

hr2 (1.3)

where the transverse component of the velocity uT (x) = u(x) − uL(x); the mean
helicity flux which equals the mean helicity dissipation rate in steady state is h =
2ν〈(∂jui)(∂jωi)〉, where the vorticity ω = ∇ × u. We shall use the notation

HLTT(r) = 〈�uL(x)(uT (x + r) × uT (x))〉 (1.4)

to denote the third-order helical statistics. The quantity HLTT(r) is the simplest third-
order velocity correlation which can have a spatially isotropic component while at
the same time displaying a ‘handedness’ due to the cross-product in its definition.
HLTT(r)/r2 is a measure of the helicity flux to scales of size r in the inertial range
which must balance the helicity dissipation h in the viscous range for statistically
steady turbulence. The 2/15-law assumes inertial-range behaviour of helicity in some
range of scales η � r � L0. A shell model calculation by Biferale, Pierotti & Toschi
(1998) has demonstrated the likelihood of the 2/15-law. However it has not been
measured in experiments or, until the present work, in direct numerical simulations
of the Navier–Stokes equations.

Theoretically, the 2/15-law has been shown to apply to the case of high-Reynolds-
number decaying flows; the arguments for the forced case have not yet been
developed. In our initial investigation into the 2/15-law statistics for decaying flows
with prescribed isotropic helicity and energy spectra (see Polifke & Shtilman 1989),
we were able to observe some of the qualitative features of the flow but the Reynolds
number achievable for given our computing abilities was insufficient to observe the
2/15-law. We therefore decided to perform forced simulations to achieve higher
Reynolds numbers and to use the statistically steady state to compute the statistics.

In the next section describes the simulations and the calculation of the statistical
quantities of interest for the 2/15-law. We present a comparison with the 4/5-law
calculation of the same flow, highlighting the differences between energy and helicity
dynamics. We show that in the inertial range the helicity flux is more anisotropic and
intermittent than the energy flux; and that the smallest resolved scales show recovery
of isotropy for energy-dependent statistics but show persistent anisotropy for helicity-
dependent statistics over the 10 large-eddy turnover times for which simulation ran.
We will conclude with some final remarks on what our analysis means for future
work in the area of helicity dynamics and parity-breaking in turbulent flows.

2. Simulations and results
We performed a simulation of the forced Navier–Stokes equation in a unit-periodic

box with 512 grid points to a side. In these units the wavenumber k is in integer
multiples of 2π. The forcing scheme was the deterministic forcing of Taylor et al.
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N ν Rλ E ε H h kmaxη

512 10−4 270 1.72 1.51 −26.8 62.2 1.1

Table 1. Parameters of the numerical simulation: ν viscosity; Rλ Taylor Reynolds number,
E = 1

2

∑
k ũ(k)2 mean total energy, ε mean energy dissipation rate; H =

∑
k ũ(k) · ω̃(k), mean

total helicity, h mean helicity dissipation rate, η = (ν3/ε)3/4. Kolmogorov dissipation scale.

100 101 102
10–6

10–5

10–4

10–3

10–2

10–1

100

E
(k

)

k

k–5/3 

100 101 102
0

0.4

0.8

1.2

1.6

k

ΠH/h

ΠE/ε  

(a) (b)

Figure 1. (a) Dashed line, energy spectrum as a function of wavenumber. Solid line, line
of slope −5/3 on the log-log scale. (b) Dashed line, flux of energy ΠE normalized by mean
dissipation rate of energy ε. Solid line, flux of helicity ΠH normalized by mean dissipation rate
of helicity h.

(2003), modelled on the deterministic forcing used in Chen et al. (2003a). This forcing
simply relaxes the Fourier coefficients in the first two wavenumbers so that the
energy matches a prescribed target spectrum F (k) = 0.5 (k = 1, 2). The forcing does
not change the phases of the coefficients, which are observed to change slowly in
time. In addition, maximum helicity was injected into the wavenumbers 1 and 2
using the scheme of Polifke & Shtilman (1989). The calculation ran for 10 large-eddy
turnover times. The flow achieved steady state in about 1 large-eddy turnover time.
The statistics reported here have been calculated over a total of 45 frames spanning
the latter 9 eddy turnover times. The same data were reported in Kurien et al. (2004).
Some additional parameters of the simulation are given in table 1. Figure 1(a) shows
the mean energy spectrum with a line indicating the Kolmogorov k−5/3 scaling and
(see Kurien et al. 2004 for an interpretation of the deviation from k−5/3 at the high
end of the inertial range). Figure 1(b) shows helicity fluxes normalized by the mean
energy and helicity dissipation rates respectively. Note the close-to-decade range of
wavenumbers where ε and h match the energy and helicity fluxes respectively very
well.

2.1. Third-order helical velocity statistics and the use of angle-averaging

We first define the compensated quantity

H̃LTT(r) = HLTT(r)/(h r2). (2.1)

In figure 2(a) we show H̃LTT(r) calculated from a single frame arbitrarily chosen

after the flow achieved statistically steady state. Each dotted line is H̃LTT(r) in one
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Figure 2. (a) HLTT(r) in 73 different directions of the flow (dotted lines) from a single frame
after the flow has reached statistically steady state. The thick solid curve is the mean over all
the directions. (b) The time-average of HLTT(r) in each of the 73 different directions (dotted
lines) and of the angle-average (thick solid curve). The 2/15 value is indicated by the thin
horizontal line in both plots. The inertial range is roughly estimated to be 30 <r/η < 150. Note
that the vertical scale in the two plots is not the same; the time-averaged quantities in (b) have
reduced spread compared to the instantaneous quantities in (a).

of 73 different directions in the flow, as a function of scale size r . The directions
are fairly uniformly distributed over the sphere (see Taylor et al. 2003 for how these
directions were chosen). None of the curves show a tendency towards the theoretically
predicted 2/15 = 0.13̇ value for an extended range of scales. Among the calculations
shown are those for the three coordinate directions which are the most often reported
in statistical turbulence studies. For any given r the different directions yield vastly
different values. Exceptional are the very largest (forced) scales where the different
directions appear to converge. This already signals something different from the usual
expectation that anisotropy, if any, should come from, and dominate in, the large
scales. The anisotropy persists strongly into the smallest resolved scales, as seen in
the large spread of values among the different directions at r/η ≈ 2, where we might
expect viscous effects to be important. Indeed it appears that it would be fortuitous
for the statistics in an arbitrary direction to yield the correct theoretical prediction
for isotropic flow.

Next we extract the isotropic component of these statistics using the angle-averaging
technique of Taylor et al. (2003). The resulting angle-independent contribution is the
thick solid curve in figure 2(a). Its peak value is ≈ 0.124, within 7% of the 2/15
value. While individual directions are both parity-breaking as well as anisotropic, the
angle-averaged value recovers the isotropic component of the parity-breaking features
(recall the analogy to the box of screws in § 1). This is a remarkable result from a single
snapshot; there is no a priori reason to expect that angle-averaging an arbitrarily
chosen, highly anisotropic snapshot will yield consistency with the 2/15-law which
was derived for isotropic flow. We believe that this result is strong motivation for the
existence of a local 2/15-law analogous to the local 4/5-law of Eyink (2003),

〈�uL(r)(uT (x + r) × uT (x))〉(Ω,B) = lim
δ→0

1

δ

∫ t+δ

t

dτ

∫
dΩ

4π

∫
B

dx
R3

× [�uL(r; x, τ )][(uT (x + r) × uT (x))]

= 2
15

hBr2, (2.2)
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Figure 3. H̃LTT(r) for various inertial range values of r/η as a function of number of
eddy turnover times. r/η = 30 (dashed line), r/η =65 (solid line), r/η = 120 (dotted line).
(a) Angle-averaged, (b) x-direction, (c) y-direction, (d) z-direction. Note that the vertical scales
in the four panels are not the same; (b–d) corresponding to the coordinate directions have
a much greater spread of values than (a) for the angle-average. The mean and standard
deviations for r/η =65 (middle of the inertial range) in each case are given in table 2.

where Ω , B , R and t have the same meanings as for (1.2); hB denotes the locally (in
space and time) averaged helicity dissipation rate. We emphasize that there is as yet
no proof for (2.2); we have merely written down a conjecture by analogy to (1.2),
motivated by the calculations for a single snapshot of the flow.

To check if the anisotropy observed in a single frame persists over time, we averaged
H̃LTT(r) in each of the 73 different directions over 9 large-eddy turnover times
(45 frames). We performed the same time-average for the angle-average. The result
is shown in figure 2(b). The spread in the inertial range decreased by about a factor
of 2 while the spread in the smallest scales decreased by a factor of about 6 relative
to the single-frame statistics of figure 2(a). In spite of this, the residual variance is
significant as we demonstrate in figure 3 and as compared below to the same analysis

for the 4/5-law. We plot a time-trace of the angle-averaged H̃LTT(r) in figure 3(a) for
r/η = 30 (lower end of the inertial range), r/η =65 (middle of the inertial range) and
r/η = 120 (higher end of the inertial range). The angle-averaged value in the middle
of the inertial range (r/η = 65) is 0.126 ± 0.009, within the error of the predicted value
of 2/15 = 0.13̇. The value ranges from 0.119 and 0.126 across the inertial range with
variances of 8% − 9%. This puts the mean angle-averaged value within 1.5 standard
deviations of the theoretical value of 2/15 across the inertial range. Since most prior
numerical simulation investigations have studied two-point statistics in the coordinate
directions only, we present in figures 3(b)–(d), the values of H̃LTT(r) again at various
values of r/η for r̂ in the x-, y- and z-directions respectively as a function of time.
Table 2 (column 2) shows the mean and standard deviation for each of the four time-
trace plots of figure 3 in the middle of the inertial range at r/η = 65. The first point
to notice is that none of the coordinate directions average to 2/15 over long times.
This behaviour demonstrates that these statistics are highly anisotropic and remain
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Inertial range 2/15-law 4/5-law

Theory 0.133̇ 0.8
Angle-avg 0.126 ± 0.009 0.75 ± 0.03
x 0.02 ± 0.31 0.78 ± 0.14
y 0.26 ± 0.23 0.75 ± 0.13
z 0.14 ± 0.21 0.76 ± 0.11

Table 2. Mean and standard deviation of the compensated third order statistics in the
middle of the inertial range.
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Figure 4. (a) Instantaneous and (b) ensemble-averaged calculations of H̃LTT(r) for the test
decaying case at 2563 (Rλ ∼ 50). The initial energy and helicity spectra were isotropic with
helicity in all the modes. The snapshot is from when the flow had maximally developed and
the ensemble average is over 30 such realizations with random phases for each realization. The
2/15 value is indicated by the horizontal line in both plots. Note the qualitative similarity to
the forced case of figure 2 especially in the small scales (r < 20). The 2/15 value is not attained,
presumably due to the low Reynolds number.

so over long times. Secondly, the mean values in the coordinate directions are poorly
defined and practically meaningless in the sense of having extremely large standard
deviations. In turbulence phenomenology, such large jumps in values from their mean
is the signature of intermittency – the presence of strong, anomalous events. We
conclude that the helicity flux in a particular direction is highly intermittent in the
inertial range (see Chen et al. 2003b for a different approach to this issue).

We return briefly to one of the subtleties of the 2/15-law, namely that it was
derived for decaying flows. Our initial tests of the 2/15-law in ensemble averages
over decaying flows with prescribed initial isotropic helicity and energy spectra (see
Polifke & Shtilman 1989 for the method) showed qualitatively the same results. That is,
the large anisotropy among the different directions and their intermittency is similar
to the forced case reported here and their angle-average has the same qualitative
behaviour indicating some constant flux in the middle of the range and smoothly
approaching zero as r → 0 (see figure 4). However the Taylor Reynolds numbers
achieved were too low (O(50)) to see the 2/15 value which is our primary interest in
this investigation. Our computational resources restrict us to forced turbulence when
investigating high-Reynolds-number effects. Given the qualitative similarities in the
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Figure 5. (a) S̃L,3(r) in 73 different directions of the flow (dotted lines) from an arbitrarily
chosen frame after the flow has achieved statistical equilibrium. The thick solid curve is the
mean over all the directions. (b) The time-average of S̃L,3(r) in each of the 73 different
directions (dotted lines) and of the angle-average (thick solid curve). The 4/5 value is indicated
by the horizontal line in both plots.

data, we anticipate that a careful analysis for the forced case would give the same
result as for the decaying case.

2.2. Comparative analysis of the 4/5-law

We compare these results with the analogous ones for the 4/5-law for the same flow.
As before, we define the compensated third-order longitudinal structure function

S̃L,3(r) = 〈(uL(x + r) − uL(x))3〉/(εr). (2.3)

Figure 5(a) shows a single-frame calculation of S̃L,3(r) for 73 different directions as
a function of r (dotted lines). We performed the angle-averaging exactly as in Taylor
et al. (2003) to recover the isotropic mean (thick solid line). Our first observation is that
the 4/5-law is recovered in this helical flow to as good a degree as in the simulation
with zero mean helicity of Taylor et al. (2003). This demonstrates that the reflection-
symmetry assumption of Kolmogorov need not hold in order to see this result. This
is understood by the fact that the lowest-order (unclosed) dynamical equations for
the symmetric second-order correlation functions (von Kármán & Howarth 1938)
from which the 4/5-law was derived by Kolmogorov (1941), decouple from their
antisymmetric counterpart (Betchov 1961) from which the 2/15-law was derived. The
third-order longitudinal structure functions of the K41 law are reflection-symmetric by
definition, and therefore cannot directly probe the helical, parity-breaking properties
of the flow, while the third-order correlation function HLTT cannot probe the reflection-
symmetric properties of the flow. The 4/5- and 2/15-laws in fact coexist in turbulent
flows with helicity. This possibility was first hinted at by Betchov (1961), who noted
that in the equations of motion of statistical moments, the fourth-order correlation
function dynamics are the lowest order at which coupling of the symmetric (energy-
dependent) and antisymmetric (helicity-dependent) quantities can occur.

In figure 5(b) the time-averaged compensated third-order longitudinal structure
function for all the directions converge rather well relative to the single frame in
figure 5(a) in the inertial range. There is still significant spread of values among the
different directions in the inertial range but it is far less than in the time-averaged
2/15-law calculation in figure 2(b). To make a more quantitative comparison, we
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Viscous range 2/15-law 4/5-law

Angle-avg 0.014 ± 0.004 0.035 ± 0.006
x −0.05 ± 0.65 0.057 ± 0.004
y 0.02 ± 0.57 0.055 ± 0.003
z 0.17 ± 0.55 0.057 ± 0.003

Table 3. Mean and standard deviation of the compensated third-order statistics for the
smallest resolved scale.

present the mid-inertial-range values of the angle-averaged, and the x-, y- and z-
direction calculations in table 2, column 3. The time mean for the angle-average is
well-defined at 0.75 ± 0.03, a small standard deviation of 4%. The means in the
coordinate directions range from 0.75 to 0.78, not intolerably far from the 0.8 value
expected from theory, but with significant standard deviation in time of the order
of 20%. Still, the behaviour is very different from the 2/15-law statistics (table 2,
column 2), where not only was the 2/15 value not achieved in an arbitrary direction,
but the variability in time was huge, 100% or more. We are lead to conclude that
in the inertial range, both instantaneously and over long times, the helicity flux (as
described by the 2/15-law) is far more anisotropic and intermittent than the energy
flux (as described by the 4/5-law) for the same statistically steady flow.

2.3. The viscous range

Anisotropy of H̃LTT persists into the smallest resolved scales as demonstrated by the
large variance among the directions in the range r/η < 10 in figures 2(a) and 2(b). By
contrast, the angular-dependence of S̃L,3(r) becomes very small in the same range in
a snapshot (figure 5a) and even more so on average over time (figure 5b). In these
scales the 2/15- and 4/5-laws no longer hold as viscous effects become important;
the quantities H̃LTT and S̃L,3 no longer correspond strictly to the helicity and energy
fluxes respectively. The viscous terms for the symmetric quantities, interpreted as
energy dissipation at scales r ≈ η, are strictly a sink for energy, pulling energy out
of the flow. As is well-known, the viscous terms for the antisymmetric quantities,
correspondingly the helicity-dissipation at scales r ≈ η, may be positive (producing
helicity) or negative (removing helicity). Nevertheless, if the small-scale statistics HLTT

are to be isotropic, the different directions might be expected to converge in the very
small scales. In table 3, column 2, we show time-mean and standard deviation of the
angle-average and the x-, y- and z-direction calculations of HLTT(r) at r/η ≈ 2. The
time-mean angle-averaged value is about 0.014 ± 0.004, a standard deviation of about
30%. As in the inertial range, the time-mean in a particular direction does not agree
with the angle-averaged value and the standard deviations are enormous. We have
shown the corresponding numbers for the 4/5-law for comparison (table 3, column 3);
the means in a particular direction agree better with the angle-averaged mean, and
the variances are around 5%, indicating recovery of isotropy in the small scales and
relatively weaker intermittency than for the 2/15-law statistics. We here introduce a
note of caution about the results in the viscous range as our simulation is only resolved
up to r/η ≈ 2 (kmax/η ≈ 1.1). While the inertial range is amply resolved, the viscous
range might display some residual effects of being under-resolved. Nevertheless, to the
extent that in the same flow, the energy-dependent statistics recover isotropy rather
quickly in the viscous scales, it seems worthwhile to note that the helicity-dependent
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statistics remain dramatically and persistently anisotropic in the viscous scales over
the long duration of our simulation.

3. Conclusions
This analysis shows that the statistically steady state (forced turbulence) as well

as local versions of the 2/15-law analogous to the forced (Frisch 1995) and local
4/5-law (Eyink 2003), might hold true; we hope our empirical results motivate a
theoretical effort towards the proofs. The helicity flux is significantly more anisotropic
and intermittent than the energy flux. This suggests that the viscous generation and
dissipation of helicity in the small scales is highly anisotropic as well. This might be
related to the strong helical events seen in the transverse alignment of vortices in the
work of Holm & Kerr (2002). There is an underlying isotropic component of the flow
which is extracted by the angle-averaging procedure of Taylor et al. (2003). It is not
surprising that angle-averaging recovers the orientation-independent component of
the field. However it is remarkable that this spherically averaged value tends to the pre-

dicted 4/5 and 2/15 values for S̃L,3 and H̃LTT respectively. This suggests that the
‘local isotropy’ requirement of K41 may be relaxed in favour of a hypothesis that the
flow statistics have a universal underlying isotropic component.

We conclude with two remarks which were not explicitly mentioned in the body
of this paper. The issues of anisotropy and intermittency of the small scales of the
flow are intimately connected with the particular kind of statistics measured. We
have shown that in the same flow, certain statistics which depend on energy flux
recover isotropy in the small scales, while others which depend on helicity do not. It
is therefore more sensible to speak of isotropy (or lack of isotropy) of the statistics of
the flow rather than of the flow itself. A second relevant remark is that our numerical
data and analysis give some indication as to what might be expected when measuring
HLTT(r) in high-Reynolds-number experimental flows. In many such experiments,
data are acquired at a few points over long times, and the statistics are obtained by
applying Taylor’s hypothesis to obtain the spatial correlations in a single-direction
(for example, the streamwise direction in a wind tunnel). Assuming there is some
helicity in the flow, it might not be possible to predict the behaviour of HLTT(r) for
a particular direction r̂ (see Kholmyansky et al. 2001). In this respect, the full-field
information and angle-averaging technique appear to be fundamental to recovering
the 2/15 isotropic prediction. An experimental effort such as the three-dimensional
velocity field imaging of Tao, Katz & Meneveau (2002) might be needed to see the
2/15-law experimentally. This is very different from measurement of the 4/5-law for
energy, where, given high enough Reynolds number, the statistics in any direction are
observed to recover isotropy in the small scales.

We are grateful for useful discussions with D. D. Holm and G. L. Eyink.
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